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We study the correlation function in a solid-on-solid model for epitaxial growth on one-dimensional sub-
strates. In the transient regime, we find an anomalous situation that the roughness exponent (a'1) obtained
from the surface width is different from that (a8'0.75) of the correlation function, which is well described by
the scaling hypotheses previously proposed by Schroederet al. @M. Schroeder, M. Siegert, D. E. Wolf, J. D.
Shore, and M. Plischke, Europhys. Lett.24, 563 ~1993!# and Das Sarma, Ghaisas, and Kim@S. Das Sarma, S.
V. Ghaisas, and J. M. Kim, Phys. Rev. E49, 122 ~1994!#. Few have been reported for anomalous scaling
behaviors of the correlation function in growth models witha<1. We also measure the surface width for
various ranges in a fixed size of system as in experiments. In case a surface width for a very small scale shows
a power-law increase with time, the roughness exponenta8 measured in experiments should be converted to
a determining the universality classes.@S1063-651X~96!05407-4#

PACS number~s!: 05.40.1j, 81.10Aj, 05.70.Ln, 81.15.Hi

I. INTRODUCTION

Recently, there has been much interest in kinetic rough-
ening of growing surfaces. A great number of works to de-
scribe the surface roughness have been carried out by calcu-
lating the surface width and the correlation function in
various kinetic growth models and continuum growth equa-
tions @1#. The surface widthW, the root-mean-square value
of the surface fluctuation for an initially flat surface, has been
considered to obey the following scaling@2#:

W~L,t ![@Š~h2^h&!2‹#1/2;La f ~ t/Lz!, ~1!

whereh(x,t) is the height of the surface ind5d811 dimen-
sion (d8 is the substrate dimension!, L the lateral size of the
substrate,t the growth time,a the roughness exponent de-
scribing a saturated surface,z the dynamic exponent, and the
scaling function f (x);xb ~with the growth exponent
b5a/z) for x!1 and f (x)→ constant for x@1. Here
^•••& denotes a spatial average. Thus the surface widthW
grows asW(t);tb for 1!t!Lz andW(L);La for t@Lz.
The critical exponentsa and b determine the universality
classes of growth models and continuum equations.

Another important quantity, the height-difference correla-
tion functionG has also been expected to scale as

G~r ,t ![^@h~x1r ,t !2h~x,t !#2&;r 2ag~r /t1/z!, ~2!

where the scaling functiong(x)→ constant forx!1 and
g(x);x22a for x@1. Thus the correlation functionG grows
asG(r );r 2a for r!t1/z andG(t);t2b for r@t1/z. For most
models such as random deposition with surface diffusion@3#
and ballistic deposition@4#, one obtains the same critical ex-
ponents from the surface widthW and the correlation func-
tion G. One can easily see thata obtained fromG never

exceeds unity, with the help of a triangle with side lengths
uh(r11)2h(r )u, uh(r )2h(r21)u, and uh(r11)2h(r
21)u @5#.

More recently, in growth models for molecular beam ep-
itaxy ~MBE!, there occurred an anomalous situation that the
critical exponenta obtained from the surface width is differ-
ent from that (a8) from the correlation function@6,7#. In
growth models proposed by Wolf and Villain~WV! @8# and
Das Sarma and Tamborenea~DT! @9#, the calculations of the
surface width yieldeda;3/2 while those of the correlation
function did a8;3/4. To resolve this inconsistency,
Schroederet al. @10# and Das Sarma, Ghaisas, and Kim@11#
proposed scaling hypotheses for the correlation function for
surfaces with large local slopes or witha.1.

In addition to the WV and the DT models, various growth
models have been proposed for describing epitaxial growth.
In previous works@12,13#, we studied a natural extension of
the WV model, which is considered to be described by the
continuum equation

]h

]t
5n¹2h2n1¹

4h1l1¹
2~¹h!21h, ~3!

whereh is a white noise. ThisextendedWV model shows
the same crossover behavior as in the original WV model but
in much smaller length and time scales. Ind852, we ob-
tained the same results of the critical exponents from the
surface widthW and the correlation functionG, which indi-
cates that the conventional scaling@Eq. ~2!# is satisfied in
d852. In contrast to the result ind852, an anomalous scal-
ing behavior is observed at initial stages ind851. The cal-
culation ofG(r ,t) for small r yields a8'3/4 which is not
consistent witha'1 for smallL @14#.

This work is mainly motivated by two points. First, we
investigate an anomalous scaling behavior of the correlation
function in a growth model witha51. Few have been re-
ported for anomalous scaling behaviors in growth models
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with a<1 @15#. In Sec. III, we show an anomalous scaling
behavior in the extended WV model ind851, which is well
described by the scaling hypotheses@10,11# previously pro-
posed. We also confirm the results previously obtained from
the surface width by the calculation of the correlation func-
tion. Second, in the presence of an anomalous scaling behav-
ior, one can give rise to a question; ‘‘is the roughness expo-
nent measured in experimentsa or a8 ?’’ In Sec. IV, we
estimate the roughness exponent as in experiments. Finally
Sec. V is devoted to a brief summary.

II. ANOMALOUS SCALING

In this section, we briefly summarize analytic and numeri-
cal results~in d851) relevant to this work. In Eq.~3! de-
scribing a conservative growth without desorption and va-
cancies, the Edwards-Wilkinson~EW! term (n¹2h)
producesa51/2 andb51/4 and describes a growing sur-
face in the presence of gravitation@16#. The2n1¹

4h term
introduced by Herring and Mullins@17# yields a53/2 and
b53/8. Kim and Das Sarma@18# proposed a restricted-
curvature~RC! model to be described by the2n1¹

4h term,
where if u¹2hu<N (N a restriction parameter!, freshly
landed atoms are deposited or evaporated, otherwise forbid-
den. Thel1¹

2(¹h)2 term was solved by Lai and Das Sarma
~LD! @19# to yielda51 andb51/3. Various growth models
relevant to Eq.~3! are briefly mentioned in Ref.@13#. In a
conservative growth, the critical exponentsa andz satisfy a
general relation 2a1d85z @8#.

Anomalous scaling behaviors have been observed in the
RC, DT, and WV models and expected to show up in growth
models with power-law increases ofG(1,t). It has been con-
sidered that the DT and the WV models show the Herring-
Mullins behavior at initial stages but crossover to other
classes@20–22#. The calculations of the surface width in the
RC model and in the DT and the WV models at initial stages
yieldeda'3/2 andz'4, while those of the correlation func-
tion did not yield the same results@6,10,11,21#. To resolve
these inconsistencies, Schroederet al. @10# and Das Sarma,
Ghaisas, and Kim~DGK! @11# investigated anomalous scal-
ing behaviors.

Schroeder et al. noted the power-law increase of
G(1,t)5^(¹h)2&5a2(t) as a sign of an anomalous scaling
behavior. WhileG(1,t) is constant in conventional growth
models, it increases ast2l in the RC, DT, and WV models.
They regarded the averaged step heighta(t) as a natural unit
of measuring h and considered a characteristic time
b(t);tm associated witha(t), wherem is set to 2l for a
conservative growth. TakingG(1,t) into consideration, they
proposed a scaling ansatz as

G~r ,t !;G~1,t !r 2a8g̃~r /t81/z8!, ~4!

where t85t/b(t) and asymptotic behaviors of the scaling
function g̃(x) are the same as those ofg(x) in Eq. ~2!. They
also obtained an alternative representation by subsuming the
time dependence ofG(1,t) in a scaling functionĝ(x);

G~r ,t !;r 2aĝ~r /t1/z!, ~5!

with the scaling functionĝ(x);x22(a2a8) for x!1 and
ĝ(x);x22a for x@1. A comparison of Eq.~4! with Eq. ~5!
in asymptotic regimes yields relations between the critical
exponents (a, b, and z) from W and those (a8, b8, and
z8) from G as the following:

z5
z8

122l
, a5a81zl, and b5b8. ~6!

One can easily noticeb8Þa8/z8 and t1/z5t81/z8;j where
j is the correlation length. We note that the critical expo-
nentsa8 andz8 also satisfy the same relation as that between
a andz

2a81d85z8. ~7!

They obtained numerical resultsa8'0.75, z8'2.4, and
2l'0.38 in the WV model, which are consistent with Eq.
~6!.

On the other hand, the anomalous scaling ansatz of DGK
is based on an analytic calculation ofG(r ,t) in the con-
tinuum equation]h/]t52n1¹

4h1h which yieldsa53/2
and z54. The analytic calculation ofG(r ,t) for r!t1/z

yields r 2a(r /t1/z)21. The power ‘‘21’’ of r /t1/z was gener-
alized to a constant ‘‘2k ’’ for a nonequilibrium surface with
a.1. This scaling ansatz is the same to Eq.~5! with
k52zl. They obtained a8'1 (0.7), z8'3 (2.5), and
k'1 (1.6), so that 2l'0.25 (0.4) in the RC~DT! model
@23#. They also obtained the same results in the WV model
as in the DT model. In their work, it was also argued that in
the case ofa51, one obtainsk50, that is,G(1,t); lnt,
which was confirmed in a modification of the restricted
solid-on-solid model@24#. In contrast to this, we obtain
G(1,t);t0.2 andk'0.6 in the transient regime witha51 in
the extended WV model.

One can simply obtainG(1,t);t2(a21)/z by a dimen-
sional analysis. It is considered that the RC, a larger curva-
ture@25#, and the modification of the restricted solid-on-solid
model follow the above scaling, while the DT, the WV, and
the extended WV models do not@5#. In a recent work of
Krug @22#, multiscaling behavior of theqth-order correlation
function was observed and a crossover to the LD behavior
was discussed in the DT model. The crossover behaviors
may affect the scaling ofG(1,t) in the DT, the WV, and the
extended WV models.

III. ANOMALOUS SCALING IN THE EXTENDED
WV MODEL

In the previous works@12,13#, we investigated a natural
extension of the WV model, where freshly landed atoms re-
lax into local energy minima where the binding energy is
calculated within next-nearest-neighbor approximation. The
extended WV model shows the LD behavior in the transient
regime and the EW behavior in the asymptotic regime. Be-
yond expectation, we could observe the crossover behavior
in much smaller length and time scales than in the original
WV model, both ind851 andd852. In d851, the calcula-
tion of W yielded thata (b) changes from 1~1/3! to 1/2
~1/4!. The EW behavior in the asymptotic regime was also
confirmed by the measurement of surface diffusion current.
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In d851 @12#, the presence of another nonlinear
l2¹•(¹h)

3 term was reported. In view of the result in
d852 @13#, it is considered to be an artifact on one-
dimensional substrates, owing to a very slow crossover from
the LD to the EW behavior.

We calculate the correlation functionG in d851 with
periodic boundary condition. As seen in Fig. 1, the log-log
plot ofG(t) vs t confirms the crossover behaviors ofb men-
tioned above, whereG(t) was obtained from the saturation
value ofG in the plot ofG(r ,t) vs r for several values of
t. We haveb50.33360.001 at early growth times and
0.27160.004 for t.35 000. From the results of the surface
width, we estimated the crossover timetc;13 000.

Next we calculateG(1,t). As shown in Fig. 2,G(1,t)
grows ast1/5 in the transient regime and saturates to constant

values in the asymptotic regime. The constant saturated
value ofG(1,t) has a correction of order 1/L, as shown in
the inset, which confirms the EW behavior in the asymptotic
regime. In the original WV model, a crossover to EW class
was manifested from the scaling behavior ofG(1,̀ ) @26#.

The power-law increase ofG(1,t) in the transient regime
showing the LD behavior (a51 and z53) indicates the
presence of an anomalous scaling behavior in the extended
WV model. We obtaineda8'0.75 from the slope in the
log-log plot of G(r ,t) vs r for small r . It is noted that
a8'0.75 was also obtained in the regime showing the LD
behavior in the original WV model@21#. With z8'2.5 ob-
tained from Eq.~7!, we collapse the data ofG(r ,t) according
to Eq. ~4! with 2l'0.2, as seen in Fig. 3. We also collapse
those according to Eq.~5!, as shown in the inset. We obtain
k52zl'0.6 for small values ofr /t1/z. Very good data col-
lapses indicate that the anomalous scaling behavior in the
transient regime is well described by the previously proposed
anomalous scaling hypotheses.

Finally, we examine the correlation function in the as-
ymptotic regime showing the EW behavior (a51/2 and
b51/4). For a large length (L@Lc;tc

1/z) and time (t@tc)
scales, we expect that the correlation functionG(r ,t)
behaves as G(r );r 3/2 for r!Lc , G(r );r for
Lc!r!j;t1/z, andG(t);t1/2 for j!r . To present this be-
havior, we show the log-log plots ofG(r ,t)/t2b as a function
of r /t1/z for varioust.tc in Fig. 4. We have 2b50.54 and
z52 corresponding to the EW behavior in the asymptotic
regime. As shown in the figure, the correlation functionG
grows asG(r ,t);r 3/2 for small values ofr /t1/z and the data
of G fall into a single curve for large values ofr /t1/z. Since
the crossover lengthLc;tc

1/z is independent oft while the
correlation lengthj is not, the curve is splitted for small
valuesr /t1/z. The data collapse shows that our understanding
of G(r ,t) in the presence of a crossover behavior is correct.

FIG. 2. The log-log plots ofG(1,t) vs t for various L. We
obtainedG(1,t);t0.2 for L51000 (h) in the transient regime. The
inset shows the plot ofG(1,t) vs 1/L in the asymptotic regime.
Statistical averages were taken over 500 samples.

FIG. 1. The log-log plot ofG vs t with L52000 where 2b is
given by the slopes. The extended WV model shows the Lai-Das
Sarma behavior in the transient regime and the Edwards-Wilkinson
behavior in the asymptotic regime. Statistical averages were taken
over 300 samples.

FIG. 3. The scaling plots ofG(r ,t) by Eq. ~4! for t5100,
200, 400, and 800 withL52000. We havea850.75, 2l50.2, and
z852.5. The scaling plots ofG(r ,t) by Eq. ~5! are also shown in
the inset wherea51 andz53. Statistical averages were taken over
300 samples.
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IV. ROUGHNESS EXPONENT IN EXPERIMENTS

As commented by Schroederet al. @10#, a surface width is
usually measured in experiments as a function ofr (,L) for
a fixed L rather than as a function ofL as calculated in
numerical simulation. To make it clear whether the rough-
ness exponent measured in experiments isa or a8, we cal-
culate the surface widthWe(r ,t) in the transient regime as in
experiments. In Fig. 5, we show the log-log plot of
We(r ,t) vs r for various t. As expected, the roughness ex-
ponent measured in experiments is consistent witha8 ob-
tained from the correlation function. Using
We

2(2,t)5G(1,t)/4, we apply the same ansatz as that of
Schroederet al.

We
2~r ,t ![^Š~h2^h& r !

2
‹r&;W2~2,t !r 2a8 f̃ ~r /t1/z!, ~8!

where^•••& r denotes a spatial average over a region of size
r , a scaling function f̃ (x)→ constant for x!1 and

f̃ (x);x22a8 for x@1. Here we used a relationt1/z5t81/z8.
The inset shows the data collapse ofWe(r ,t) as a function of
r /t1/z. The perfect data collapse shows thatWe(r ,t) behaves
in the same way asG(r ,t). We also measuredWe(r ,t) in the
WV model and in the random deposition with surface diffu-
sion. As expected,We(r ,t) also shows an anomalous scaling
behavior in the WV model. But in the random deposition
with surface diffusion,W(2,t) saturates to a constant imme-
diately ~so that, the data ofWe(r ,t) with different t coincide
for small r ) and bothWe(r ,t) andW(L,t) yield the same
roughness exponenta51/2. Finally we check the behavior
ofWe(L,t). Here, for simplicity, we do not consider a cross-
over to a regime with the conventional scaling. Forr5L, we
have We

2(L,t);We
2(2,t)L2a8 f̃ (L/t1/z). SinceWe

2(2,t);t2l

for t,Lz and We
2(2,t);L2zl for t.Lz, we obtain

We
2(L,t);t2b for t,Lz andWe

2(L,t);L2a for t.Lz with
the help of Eq.~6!, so that we recovered the behavior of
W(L,t).

To our knowledge, an anomalous scaling behavior has not
been observed in experiments. Moreover, in numerical simu-
lations on two-dimensional substrates of real system in ex-
periments, few have been reported for an anomalous scaling
behavior except for the simulation of the WV model on a
two-dimensional substrate by Sˇmilauer and Kotrla @21#.
However, it is not sufficient to arrive at the conclusion
whether an anomalous scaling behavior is simply an artifact
on one-dimensional substrates or it can be observed in ex-
periments. One can find similar figures to our Fig. 5 in ex-
perimental works, such as Fig. 3 of Ref.@27# and Fig. 2 of
Ref. @28#. The scattered data for small scales in the figures
may be due to anomalous scaling behaviors or simply due to
a finite size effect. In Ref.@27#, Tong et al. obtained the
roughness exponent (a8) as 0.8460.05 for the MBE growth
of CuCl on CaF2~111!. If We(r ,t) for small r increases as a
power law oft, the value of the roughness exponent is un-
derestimated, so that the surface roughness is expected to be
described by the Herring-Mullins behavior rather than by the
LD behavior. We emphasize thatin the presence of power-
law increase of the surface width for a very small scale, the
underestimated roughness exponenta8, measured in experi-
ments, should be converted toa which determines the uni-
versality class.

V. SUMMARY

We have studied the correlation function in the extended
WV model on one-dimensional substrates. In the transient
regime showing the Lai-Das Sarma behavior, we have found
that the roughness exponenta8'0.75 obtained from the cor-
relation function is different froma'1 obtained from the
surface width. Few have been reported for anomalous scaling
behaviors of the correlation function in growth models with
a<1. This anomalous behavior of the correlation function is
well described by the previously proposed scaling hypoth-
eses. It is considered that the anomalous scaling behavior
stems out of the groove instability which was originally dis-

FIG. 4. The log-log plots ofG(r ,t)/t2b vs r /t1/z with
2b50.54 and z52. We have t540 000, 50 000, 70 000, and
100 000~from right to left! andL52000. Statistical averages were
taken over 300 samples. The parallel dotted lines with the slope 3/2
were merely drawn for a guide to the eye.

FIG. 5. The log-log plots ofWe(r ,t) vs r for t5100 (s),
200 (L), 400 (n), and 800 (h) with L52000. Statistical aver-
ages were taken over 500 samples. The inset shows the scaling plots
of We(r ,t) by Eq. ~8! wherea850.75, 2l50.2, andz53.
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cussed by Amar, Lam, and Family@29# in various growth
models; a macroscopic groove can be found in the saturated
regime of a system with a size less than the crossover length.
In the asymptotic regime showing the Edwards-Wilkinson
behavior, the conventional scaling is satisfied. We also cal-
culated the surface width as measured in experiments. The
result shows that if a surface width for a very small scale
shows a power-law increase with time, the measured rough-
ness exponent should be modified according to Eq.~6! for a
comparison with theoretical works.
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