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Anomalous scaling behavior in a solid-on-solid model for epitaxial growth
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We study the correlation function in a solid-on-solid model for epitaxial growth on one-dimensional sub-
strates. In the transient regime, we find an anomalous situation that the roughness expenEnbptained
from the surface width is different from that(~0.75) of the correlation function, which is well described by
the scaling hypotheses previously proposed by Schroetdel [M. Schroeder, M. Siegert, D. E. Wolf, J. D.
Shore, and M. Plischke, Europhys. Leat, 563(1993] and Das Sarma, Ghaisas, and Kig Das Sarma, S.
V. Ghaisas, and J. M. Kim, Phys. Rev.4®, 122 (1994]. Few have been reported for anomalous scaling
behaviors of the correlation function in growth models witks 1. We also measure the surface width for
various ranges in a fixed size of system as in experiments. In case a surface width for a very small scale shows
a power-law increase with time, the roughness exporénneasured in experiments should be converted to
a determining the universality class¢&§1063-651X96)05407-4

PACS numbgs): 05.40:+j, 81.10Aj, 05.70.Ln, 81.15.Hi

[. INTRODUCTION exceeds unity, with the help of a triangle with side lengths
[h(r+1)—h(r)|, |h(r)—h(r—1)|, and |h(r+1)—h(r
Recently, there has been much interest in kinetic rough—1)| [5].
ening of growing surfaces. A great number of works to de- More recently, in growth models for molecular beam ep-
scribe the surface roughness have been carried out by calcitaxy (MBE), there occurred an anomalous situation that the
lating the surface width and the correlation function in critical exponentr obtained from the surface width is differ-
various kinetic growth models and continuum growth equa-ent from that ') from the correlation functiori6,7]. In
tions[1]. The surface widthV, the root-mean-square value growth models proposed by Wolf and VillaivV) [8] and
of the surface fluctuation for an initially flat surface, has beerDas Sarma and Tamboren@2T) [9], the calculations of the

considered to obey the following scalifg]: surface width yieldedx~ 3/2 while those of the correlation
function did a'~3/4. To resolve this inconsistency,
W(L,t)=[{(h— (h))2)]Y2~ L (t/L), (1) Schroedeet al.[10] and Das Sarma, Ghaisas, and Kjiibi]

proposed scaling hypotheses for the correlation function for
surfaces with large local slopes or with>1.
whereh(x,t) is the height of the surface oh=d’ +1 dimen- In addition to the WV and the DT models, various growth
sion (d’ is the substrate dimensiprL the lateral size of the models have been proposed for describing epitaxial growth.
substratef the growth time,a the roughness exponent de- In previous workg12,13, we studied a natural extension of
scribing a saturated surfacethe dynamic exponent, and the the WV model, which is considered to be described by the
scaling function f(x)~x? (with the growth exponent continuum equation
B=alz) for x<1 and f(x)— constant forx>1. Here

---) denotes a spatial average. Thus the surface width oh
érov&s asw(t)~t# ?or 1<t<LZgand W(L)~L¢ for t>L2 ot rVPh=mV*h+ A VA(Vh)*+ 7, )
The critical exponentsy and 8 determine the universality
classes of growth models and continuum equations. where 7 is a white noise. ThigxtendedWV model shows
Another important quantity, the height-difference correla-the same crossover behavior as in the original WV model but
tion functionG has also been expected to scale as in much smaller length and time scales.dh=2, we ob-

tained the same results of the critical exponents from the
_ N 2a 112 surface widthw and the correlation functio®, which indi-
G(rO=([(x+rO)=h(xDIH~r¥g(r/t™), @  es that the conventional scalifiq. (2)] is satisfied in
d’=2. In contrast to the result id’ =2, an anomalous scal-
where the scaling functiog(x)— constant forx<1 and ing behavior is observed at initial stagesdf= 1. The cal-
g(x)~x"2 for x> 1. Thus the correlation functio® grows  culation of G(r,t) for smallr yields a’~3/4 which is not
asG(r)~r2« for r<t'? andG(t)~t%# for r>t2. For most consistent witha~1 for smallL [14].
models such as random deposition with surface diffufgin This work is mainly motivated by two points. First, we
and ballistic depositiofi], one obtains the same critical ex- investigate an anomalous scaling behavior of the correlation
ponents from the surface widilV and the correlation func- function in a growth model withu=1. Few have been re-
tion G. One can easily see that obtained fromG never ported for anomalous scaling behaviors in growth models
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with <1 [15]. In Sec. Ill, we show an anomalous scaling with the scaling function@(X)NX—Z(a—a’) for x<1 and
behavior in the extended WV model @i =1, which is well g(x)~x "2 for x>1. A comparison of Eq(4) with Eq. (5)

described by the scaling hypothe4&§,11 previously pro-  in asymptotic regimes yields relations between the critical
posed. We also confirm the results previously obtained fromgxponents ¢, 8, andz) from W and those &', 8, and
the surface width by the calculation of the correlation func-z') from G as the following:

tion. Second, in the presence of an anomalous scaling behav-

ior, one can give rise to a question; “is the roughness expo- z

nent measured in experimengsor ' ?” In Sec. IV, we Z=75y @=a'+tzh, and B=p". (6)
estimate the roughness exponent as in experiments. Finally

Sec. V is devoted to a brief summary.

One can easily notic@’ # a'/z' and t¥2=t’Y2' ~ ¢ where
¢ is the correlation length. We note that the critical expo-

Il. ANOMALOUS SCALING nentsa’ andz’ also satisfy the same relation as that between
a andz
In this section, we briefly summarize analytic and numeri-
cal results(in d’=1) relevant to this work. In Eq(3) de- 2a0'+d'=7". (7

scribing a conservative growth without desorption and va-
cancies, the Edwards-Wilkinson(EW) term (»¥V?h)  They obtained numerical results’~0.75, z'~2.4, and
producesa=1/2 andB=1/4 and describes a growing sur- 2\~0.38 in the WV model, which are consistent with Eq.
face in the presence of gravitatiph6]. The — v, V*h term  (6).
introduced by Herring and Mullingl7] yields «=3/2 and On the other hand, the anomalous scaling ansatz of DGK
B=3/8. Kim and Das Sarm#18] proposed a restricted- is based on an analytic calculation Gf(r,t) in the con-
curvature(RC) model to be described by the v, V*h term,  tinuum equationgh/dt=—v,V*h+ » which yields a=3/2
where if [V2h|<N (N a restriction parametgr freshly ~and z=4. The analytic calculation of5(r,t) for r<t'
landed atoms are deposited or evaporated, otherwise forbigtields r2*(r/t¥?)~1. The power “~1" of r/t"* was gener-
den. Thex;V?(Vh)2 term was solved by Lai and Das Sarma alized to a constant* " for a nonequilibrium surface with
(LD) [19] to yield =1 andB=1/3. Various growth models a>1. This scaling ansatz is the same to H§) with
relevant to Eq(3) are briefly mentioned in Ref13]. Ina  «=2z\. They obtained «’~1(0.7), z'~3(2.5), and
conservative growth, the critical exponeatsandz satisfy a  «~1(1.6), so that ~0.25 (0.4) in the RQDT) model
general relation 2+d’ =z [8]. [23]. They also obtained the same results in the WV model
Anomalous scaling behaviors have been observed in thas in the DT model. In their work, it was also argued that in
RC, DT, and WV models and expected to show up in growththe case ofa=1, one obtainsk=0, that is, G(1t)~Int,
models with power-law increases 6{1t). It has been con- which was confirmed in a modification of the restricted
sidered that the DT and the WV models show the Herringsolid-on-solid model[24]. In contrast to this, we obtain
Mullins behavior at initial stages but crossover to otherG(1t)~t%?andx~0.6 in the transient regime with=1 in
classeg20—-22. The calculations of the surface width in the the extended WV model.
RC model and in the DT and the WV models at initial stages One can simply obtairG(1t)~t2~1’2 py a dimen-
yieldeda=~3/2 andz~4, while those of the correlation func- sional analysis. It is considered that the RC, a larger curva-
tion did not yield the same resulf§,10,11,21 To resolve ture[25], and the modification of the restricted solid-on-solid
these inconsistencies, Schroed¢ml. [10] and Das Sarma, model follow the above scaling, while the DT, the WV, and
Ghaisas, and KinfDGK) [11] investigated anomalous scal- the extended WV models do n5]. In a recent work of
ing behaviors. Krug [22], multiscaling behavior of thgth-order correlation
Schroeder et al. noted the power-law increase of function was observed and a crossover to the LD behavior
G(1t)={((Vh)?)=a?(t) as a sign of an anomalous scaling was discussed in the DT model. The crossover behaviors
behavior. WhileG(1,t) is constant in conventional growth may affect the scaling o&(1t) in the DT, the WV, and the
models, it increases a@$" in the RC, DT, and WV models. extended WV models.
They regarded the averaged step healt) as a natural unit

of measuring h and considered a characteristic time 1Il. ANOMALOUS SCALING IN THE EXTENDED
b(t)~t* associated witha(t), where i is set to A for a WV MODEL

conservative growth. TakinG(1,t) into consideration, they ) ) )

proposed a scaling ansatz as In the previous work$12,13, we investigated a natural

extension of the WV model, where freshly landed atoms re-

) ) lax into local energy minima where the binding energy is
G(r,t)~G(1t)r3® ?j(r/t’l’Z ), (4) calculated within next-nearest-neighbor approximation. The
extended WV model shows the LD behavior in the transient
regime and the EW behavior in the asymptotic regime. Be-

wheret'=t/b(t) and asymptotic behaviors of the scaling ; ;
functiong(x) are the same as those@f) in Eq. (2). The yond expectation, we could observe the crossover behavior
9 9. {<). Y in much smaller length and time scales than in the original

also obtained an alternative representation by subsuming trwv model. both ind’ =1 andd’=2. Ind’=1. the calcula-

time dependence d&(1) in a scaling functiory(x); tion of W yielded thata (8) changes from 11/3) to 1/2
(1/4). The EW behavior in the asymptotic regime was also
G(r,t)~r2eq(r/t*?), (5) confirmed by the measurement of surface diffusion current.



286 CHANG SU RYU, K. P. HEO, AND IN-MOOK KIM 54
8 T T T T T [ T 0 T T T T 1
7k 2 - B
8 - o~

~ Yoo AL ]
T 5t e Fa
= a «{
= < 6 3 |
4L — E
-8 F .
3+ —12 I 1 I L
-4 -2 0 2 4 8
In(r/t7)
2 i { 1 1 i 1 | -10 I L L
4 5 6 7 8 9 10 11 12 -4 -2 0 2 4 [

In t ln(r/t,l/z’)

FIG. 1. The log-log plot ofG vst with L=2000 where B is FIG. 3. The scaling plots of5(r,t) by Eq. (4) for t=100,
given by the slopes. The extended WV model shows the Lai-Da®00, 400, and 800 with =2000. We haver’ =0.75, 2. =0.2, and
Sarma behavior in the transient regime and the Edwards-Wilkinsop’ =2 5. The scaling plots o6(r,t) by Eq. (5) are also shown in

behavior in the asymptotic regime. Statistical averages were takefhe inset wherer= 1 andz= 3. Statistical averages were taken over
over 300 samples. 300 samples.

In d’=1 [12], the presence of another nonlinear
\,V-(Vh)3 term was reported. In view of the result in
d’'=2 [13], it is considered to be an artifact on one-
dimensional substrates, owing to a very slow crossover fro
the LD to the EW behavior.

We calculate the correlation functioB in d’=1 with
periodic boundary condition. As seen in Fig. 1, the log-log

plot of G(t) vst confirms the crossover behaviors@®imen- showing the LD behavior 4=1 .and 223), indicates the
tioned above, wher&(t) was obtained from the saturation Presence of an anomalous scaling behavior in the extended

value of G in the plot of G(r,t) vsr for several values of WV model. We obtainedx’~0.75 from the slope in the
t. We have 8=0.333-0.001 at early growth times and log-log plot of G(r,t) vs r for small r. It is noted that
0.271+0.004 fort>35 000. From the results of the surface @' ~0.75 was also obtained in the regime showing the LD
width, we estimated the crossover tirhe-13 000. behavior in the original WV modefl21]. With z'~2.5 ob-
Next we calculateG(1t). As shown in Fig. 2G(1t) tained from Eq(7), we collapse the data @(r,t) according
grows ast*® in the transient regime and saturates to constanto Eqg. (4) with 2x~0.2, as seen in Fig. 3. We also collapse
those according to Ed5), as shown in the inset. We obtain
k=22\~0.6 for small values of/t*2. Very good data col-
lapses indicate that the anomalous scaling behavior in the
7 transient regime is well described by the previously proposed
anomalous scaling hypotheses.

values in the asymptotic regime. The constant saturated
value of G(1,t) has a correction of order [1/ as shown in
the inset, which confirms the EW behavior in the asymptotic
rTt]egime. In the original WV model, a crossover to EW class
was manifested from the scaling behavior@f1,=) [26].

The power-law increase @(1,) in the transient regime

G(1,t)

o
G(1,2)
=

300
150
80

40

20

108

Finally, we examine the correlation function in the as-
ymptotic regime showing the EW behavior€1/2 and
B=1/4). For a large lengthL(> Lc~tg’2) and time (>t,)
scales, we expect that the correlation functi@fr,t)
behaves as G(r)~r®? for r<L,, G(r)~r for
Lo<r<&~t2 andG(t)~tY2for é&<r. To present this be-
havior, we show the log-log plots @&(r,t)/t?# as a function
of r/tY# for varioust>t, in Fig. 4. We have B=0.54 and
z=2 corresponding to the EW behavior in the asymptotic
regime. As shown in the figure, the correlation functiGn
grows asG(r,t)~r%2 for small values of /t'* and the data
of G fall into a single curve for large values oft'?. Since
the crossover Iengthc~té/Z is independent of while the

FIG. 2. The log-log plots ofG(1t) vst for variousL. We
obtainedG(1,t)~t%2for L=1000 (1) in the transient regime. The
inset shows the plot 06(1t) vs 1L in the asymptotic regime.
Statistical averages were taken over 500 samples.

correlation lengthé is not, the curve is splitted for small
valuesr/t'2. The data collapse shows that our understanding
of G(r,t) in the presence of a crossover behavior is correct.
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2 : : W2(r, ) =({(h—(h)) D) ~W2(2t)r2« T (r/t2), (8)

where(- - -), denotes a spatial average over a region of size
1 r, a scaling functionf(x)— constant for x<1 and

T(x)~x"2" for x>1. Here we used a relatiart?=t'12".
The inset shows the data collapse/éf(r,t) as a function of
7 r/t'2. The perfect data collapse shows théi(r,t) behaves
in the same way a6 (r,t). We also measured/(r,t) in the
WV model and in the random deposition with surface diffu-
. sion. As expectedN(r,t) also shows an anomalous scaling
behavior in the WV model. But in the random deposition
with surface diffusionW(2,t) saturates to a constant imme-
-6 - : ‘ ‘ diately (so that, the data diV.(r,t) with differentt coincide
for smallr) and bothW(r,t) and W(L,t) yield the same
roughness exponenri=1/2. Finally we check the behavior
of W(L,t). Here, for simplicity, we do not consider a cross-
ZBFI(();;544I ghe 2|09V-\|/09hp|0tf Zg%(gét)/ézﬂ 0(;/(? f;élgog“th 4 over to a regime with the conventional scaling. FerL, we
=0.54 andz=2. We havet= , : , an 2 2 2a"F () 41z ; 2 2\
100 000(from right to lef) and L =2000. Statistical averages were have We(ZL,t)~We(22,t)L fz(zlj\/t ): Smc? We(2)~t :
taken over 300 samples. The parallel dotted lines with the slope S/EOr t<L® and Wg(2t)~L for t>L% we obtain

n(r/t¥?)

were merely drawn for a guide to the eye. W2(L,t)~t for t<L? and Wi(L,t)~L>* for t>L° Wi_th
the help of Eq.(6), so that we recovered the behavior of
W(L,t).

To our knowledge, an anomalous scaling behavior has not
been observed in experiments. Moreover, in numerical simu-
lations on two-dimensional substrates of real system in ex-

As commented by Schroeder al.[10], a surface width is  periments, few have been reported for an anomalous scaling
usually measured in experiments as a function ¢&L) for behavior except for the simulation of the WV model on a
a fixed L rather than as a function df as calculated in two-dimensional substrate byn@auer and Kotrla[21].
numerical simulation. To make it clear whether the rough-However, it is not sufficient to arrive at the conclusion
ness exponent measured in experiments isr o', we cal-  Whether an anomalous scaling behavior is simply an artifact
culate the surface widt.(r,t) in the transient regime as in ©N oné-dimensional substrates or it can be observed in ex-
experiments. In Fig. 5, we show the log-log plot of per!ments. One can find S|m!Iar figures to our Flg. 5in ex-
W,(r,t) vsr for varioust. As expected, the roughness ex- Perimental works, such as Fig. 3 of Re27] and Fig. 2 of

ponent measured in experiments is consistent withob- Ref. [k)28]d The scatter?d data flpr Sk;n?:l s'cales mlthel flgures
tained from the correlation  function. Using may be due to anomalous scaling behaviors or simply due to

2 _ a finite size effect. In Ref[27], Tong et al. obtained the
\é\gr(]rzégcj_eit(zlt)m, we apply the same ansatz as that Ofroughness exponenty() as 0.84-0.05 for the MBE growth
’ of CuCl on Cak(111). If Wy(r,t) for smallr increases as a
power law oft, the value of the roughness exponent is un-
derestimated, so that the surface roughness is expected to be

IV. ROUGHNESS EXPONENT IN EXPERIMENTS

20 ' ' ' T ' described by the Herring-Mullins behavior rather than by the
, g o D0p@0O0NeeERE LD behavior. We emphasize that the presence of power-
oo ° A AAAAASAMA law increase of the surface width for a very small scaite
1.5+ DDD”A T 1 underestimated roughness exponeht measured in experi-
DAAAA 6 6 0000 0 © 0000000000 ments, should be converted towhich determines the uni-
a 1 .
R oa®e0®’ o 0 0 06000000a5000 versality class.
z 10 o 2o 0 © o " -
£ 5760 2 V. SUMMARY
o i
< -3
osl 8 ° 2, i We have studied the correlation function in the extended
oo <, WV model on one-dimensional substrates. In the transient
S ] regime showing the Lai-Das Sarma behavior, we have found
inge 168 that the roughness exponent~0.75 obtained from the cor-
00, 3 ) 5 5 7 5 relation function is different fromu~1 obtained from the
nr surface width. Few have been reported for anomalous scaling

behaviors of the correlation function in growth models with

FIG. 5. The log-log plots oMW(r,t) vs r for t=100 (O), a<1. This anomalous behavior of the correlation function is

200 (¢'), 400 (A), and 800 [J) with L=2000. Statistical aver- Well described by the previously proposed scaling hypoth-
ages were taken over 500 samples. The inset shows the scaling pl&ses. It is considered that the anomalous scaling behavior

of We(r,t) by Eq.(8) wherea’=0.75, 22=0.2, andz=3. stems out of the groove instability which was originally dis-
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